Extensions 1→N→G→Q→1 with N=C23 and Q=C3⋊F5

Direct product G=N×Q with N=C23 and Q=C3⋊F5
dρLabelID
C23×C3⋊F5120C2^3xC3:F5480,1206

Semidirect products G=N:Q with N=C23 and Q=C3⋊F5
extensionφ:Q→Aut NdρLabelID
C23⋊(C3⋊F5) = C2×A4⋊F5φ: C3⋊F5/D5S3 ⊆ Aut C233012+C2^3:(C3:F5)480,1191
C232(C3⋊F5) = C3⋊(C23⋊F5)φ: C3⋊F5/C15C4 ⊆ Aut C231204C2^3:2(C3:F5)480,316
C233(C3⋊F5) = C2×D10.D6φ: C3⋊F5/C3×D5C2 ⊆ Aut C23120C2^3:3(C3:F5)480,1072

Non-split extensions G=N.Q with N=C23 and Q=C3⋊F5
extensionφ:Q→Aut NdρLabelID
C23.(C3⋊F5) = Dic5.S4φ: C3⋊F5/D5S3 ⊆ Aut C2312012-C2^3.(C3:F5)480,963
C23.2(C3⋊F5) = C5⋊(C12.D4)φ: C3⋊F5/C15C4 ⊆ Aut C231204C2^3.2(C3:F5)480,318
C23.3(C3⋊F5) = C30.22M4(2)φ: C3⋊F5/C3×D5C2 ⊆ Aut C23240C2^3.3(C3:F5)480,317
C23.4(C3⋊F5) = C2×C158M4(2)φ: C3⋊F5/C3×D5C2 ⊆ Aut C23240C2^3.4(C3:F5)480,1071
C23.5(C3⋊F5) = C22×C15⋊C8central extension (φ=1)480C2^3.5(C3:F5)480,1070

׿
×
𝔽